Contact Us
Call us
United States
+1 646 893 3042
Accounts receivable department
+1 646 974 0772
All other
+32 2 793 02 19
North America: USA and Canada
Collibra Inc.
61 Broadway, 31st Floor
New York, NY 10006 - USA
EMEA: Belgium
Collibra NV
Picardstraat 11 B 205,
1000 Brussels - BELGIUM
View all
Register for access
Register for access
  • Dashboard
  • University
  • Data Citizens
  • Marketplace
  • Product Resources
  • Support
  • Developer Portal
By signing up you agree to Collibra's Privacy Policy.
My Profile
John Smith
Data Scientist, USA
Cloud-Ready Data
Digital Transformation
Data Governance

Analyst Report

Build a business case for continuous data quality

In this report you’ll learn how:

  • Organizations must align their business objectives to their data quality program in order to be successful.
  • Data quality cannot be considered a one-off IT program, but rather an integral part of an organization's digital transformation.

Read this Gartner report to learn more about the challenges of poor data quality and how to overcome those roadblocks to get the most out of your data investments.

*Gartner, 5 Steps to Build a Business Case for Continuous Data Quality Assurance, Saul Judah, Alan D. Duncan, Melody Chien, Ted Friedman, April 20 2020. GARTNER is a registered trademark and service mark of Gartner, Inc. and/or its affiliates in the U.S. and internationally, and is used herein with permission. All rights reserved.


Data quality is crucial as organizations accelerate their digital business efforts, but poor data quality is preventing organizations from becoming truly data-driven. With poor data quality, data and analytics leaders struggle to show the business value of their data investments. Gartner outlines the five-step approach for creating a business case for data quality improvement.


Poor data quality destroys business value. Recent research shows organizations estimate the average cost of poor data quality at $10.8 million per annum.1 This number is likely to rise as business environments become increasingly digitalized and complex.

Figure 1 shows that managing data quality issues across the organizational landscape is increasingly cited as a top challenge (by 60% of respondents) to data management practice (see "Survey Analysis: Data Management Struggles to Balance Innovation and Control"). Organizations with multiple business units (BUs) operating in several geographic regions with many customers, employees, suppliers and products will inevitably face more severe data quality issues.

Low levels of data literacy and silo-oriented attitudes, prevalent among senior business leaders, often result in a lack of investment in systemic and sustainable data quality improvement. As a consequence, key business goals, such as financial performance and customer experience, are adversely impacted.