Contact Us
Call us
United States
+1 646 893 3042
Accounts receivable department
+1 646 974 0772
All other
+32 2 793 02 19
North America: USA and Canada
Collibra Inc.
61 Broadway, 31st Floor
New York, NY 10006 - USA
EMEA: Belgium
Collibra NV
Picardstraat 11 B 205,
1000 Brussels - BELGIUM
View all
Register for access
Register for access
  • Dashboard
  • University
  • Data Citizens
  • Marketplace
  • Product Resources
  • Support
  • Developer Portal
By signing up you agree to Collibra's Privacy Policy.
My Profile
John Smith
Data Scientist, USA
Cloud-Ready Data
Digital Transformation
Data Governance

Making Data Discovery Easier

Making Data Discovery Easier

Making Data Discovery Easier

Imagine if searching for data was as easy as ordering from Amazon. When we go to an online store we search for the items we need, filter, find them, compare and review them. We select our items, move them into our online shopping cart, and, with astonishing immediacy, our purchases are delivered to us. Based on our purchase history, similar products are recommended to us, which we can consider, purchase, or ignore. The process is simple, intuitive, and even for the die-hard bricks-and-mortar shoppers among us, irresistibly convenient.

Contrast that with what most of your business users experience when they set out to look for the data they need to do their jobs. At a time when data volume and complexity is increasing, they often don’t know where to start looking—and spin their (and other people’s) wheels uselessly chasing down false leads. Or they encounter a sea of data with no context that’s meaningful to them—and so miss finding good data relevant to their question. Or they discover data that’s rife with quality issues—and so become distrustful of their data sources.

Your business is likely awash in data—and that can be a good thing. Aggregating data from across multiple sources can provide valuable insights your business can use to improve the customer experience, innovate more rapidly, find new efficiencies, and build your competitive edge. But when data is not easy find, when it is difficult to understand, and when trust in that data is low or nonexistent, your data has no worth.

How, then, do we bring the Amazon experience to the world of data? One way is to demand a simple and intuitive data catalog that allows business users to find and shop for trusted data from one central location. And why not go a step further and incorporate machine learning functionality so that the catalog can “learn” from a data user’s past behaviors to make specific recommendations for similar “data purchases,” much like Amazon does for frequent shoppers.

Delivering good data is key, of course. And that can’t happen without a strong data governance foundation to ensure that data quality is high, ownership is clear, and accountability is transparent. For business users who need quick access to enterprise data, a data catalog populated by data that the organization agrees is valuable is a god-send. Wasteful hours spend searching for (sometimes useless) data are a thing of the past and your business users can now spend more time doing what you’re paying them to do: solve real business problems.

With technology models borrowed from the consumer world, businesses are finally gaining the power to find the right data quickly, evaluate its lineage, and enrich its value. As a result, they’re unlocking the power of data to serve as an actionable tool for competitive advantage.


More stories like this one

Sep 8, 2022 - 4 min read

Why you need an enterprise data catalog

Read more
Apr 27, 2022 - 4 min read

The enterprise data catalog: lessons learned from cutting the cord

Read more
Nov 29, 2021 - 3 min read

Shopping for data with Collibra and Okera

Read more