Contact Us
Call us
United States
+1 646 893 3042
Accounts receivable department
+1 646 974 0772
All other
+32 2 793 02 19
North America: USA and Canada
Collibra Inc.
61 Broadway, 31st Floor
New York, NY 10006 - USA
EMEA: Belgium
Collibra NV
Picardstraat 11 B 205,
1000 Brussels - BELGIUM
View all
Register for access
Register for access
  • Dashboard
  • University
  • Data Citizens
  • Marketplace
  • Product Resources
  • Support
  • Developer Portal
By signing up you agree to Collibra's Privacy Policy.
My Profile
John Smith
Data Scientist, USA
Cloud-Ready Data
Digital Transformation
Data Governance

10 Tips on how to improve data quality

The importance of high-quality data is documented throughout the top verticals and is especially significant with the recent pandemic. As a result, achieving high data quality is a critical objective for data-driven organizations.

Improving data quality delivers: 

  • Trusted reporting and analytics
  • Optimized operational processes
  • Superior customer experience
  • Better ROI

Below are our top tips for improving data quality to get the best out of your data investments.

Tip 1: Define business need and assess business impact

Business needs are often the drivers for data quality improvement initiatives. You can prioritize data quality issues according to your business needs and how they will impact your business in the long run. Measuring business impact helps establish a goal and track the progress of data quality improvement. A continued reference to the business needs sets the context for refining the approach to data quality.

Tip 2: Understand your data  

For trusted use, you not only need data that is “right” but you also need the “right” data. Yes, not all data is equal. You need to understand data correctly to see if it is “right” or relevant for your intended use. The key here is in understanding your data. Where it comes from, what it describes, and how you can extract the most value from it. Data intelligence is the ability to understand and use your data in the right way. Correctly describing and connecting data throughout its journey is the best strategic approach to improve data quality.    

Tip 3: Address data quality at the source

Very often, data quality issues get fixed temporarily, only to move on with the work. Consider what happens if a data scientist finds empty records in a selected data set. Most likely, she’ll fix the error in her copy and continue with the analysis. If the corrections do not reach the source, the original data set still retains the quality issue, affecting its subsequent use. Prevention is better than cure, and preventing the propagation of bad data is how you can improve data quality in such cases.

Let’s take another case where a health clinic staff often had difficulties contacting the patients after their visits. When they found the phone numbers were wrong for several patients, they decided to address this issue at the root. When patients checked in, the staff asked them to verify their phone numbers and quickly eliminated the data quality issue.

Tip 4: Use option sets and normalize your data

When users enter data in different forms, they make mistakes, especially spelling mistakes. They may write “roda” for “road” and forget about it. But when you pick up these values for analysis, they can seriously affect the data set quality. 

Whenever possible, use a defined list of values or option sets for such fields so that the users cannot make any mistakes. In other cases, normalization tools and techniques can resolve the data inconsistencies to improve the quality of data. 

Tip 5: Promote a data-driven culture 

Organization-wide data-driven culture follows a specific set of values, behaviors, and norms that enable the effective use of data. Naturally, it needs a buy-in from everyone to acknowledge their role in data quality. Develop an organization-wide shared definition of data quality, identify your specific quality metrics, ensure continuous measurement on the defined metrics, and plan for error resolutions. Your organization can also leverage Data Governance to standardize the management of data assets and improve their quality.  

A key recommendation from Gartner is to give business users the ability to flag and address quality problems. With self-service Data Quality, you can further empower data analysts, data scientists, and business users to identify and resolve the quality issues themselves. In short, a robust data-driven culture encourages everyone to contribute to data quality.

Tip 6: Nominate a data steward

As part of the data-driven culture initiative, you can nominate a data steward to manage data quality. Data stewards can analyze the current state of data quality, optimize review processes, and implement the required tools. Overseeing data governance and managing metadata are also part of their responsibility. Having a data steward in the organization ensures clear accountability and complete supervision for improving data quality. 

Tip 7: Leverage DataOps to empower your teams

DataOps methodology is focused on process-oriented automation along with best practices, to improve the quality and agility of data analytics. Leveraging DataOps can activate data for business value across all technology tiers, from infrastructure to experience. 

You can innovate with DataOps to add automation to human behaviors that define data quality, test data quality, and remediate data quality failures. Empowering all your teams with the DataOps culture is a strategic way to improve data quality.

Tip 8: Focus on training and reminding

A data-driven culture ensures participation from the entire organization towards data quality. But it is also essential to sustain their interest and contribution through innovative ideas. Regular training in concepts, metrics, and tool usage will help reinforce the needs and benefits of data quality. Organization-wide sharing of quality issues and success stories can act as friendly reminders. Offering specialized training to staff is an effective approach to improving data quality.

Tip 9: Prevent future data errors

Data quality is not just about correcting the current errors but also about preventing future errors. Assessing and addressing the root causes of data quality issues in your organization is the key here. Are the processes manual or automated? Are the measurement metrics correctly defined? Can the stakeholders directly correct the errors? Is the data quality culture firmly in place? The data quality solution you choose should focus on enabling data quality across the organization. 

Tip 10: Communicate actions and results

Onboarding everyone in data quality initiatives is critical because data quality today is not limited to a few teams. Making all stakeholders aware of the activities creates interest and promotes participation. If you frequently communicate about data quality errors, possible reasons, initiatives, tests, and results, more people will actively engage with the improvement projects. Documenting the progress, actions, and results further adds to the organizational knowledge base for powering future initiatives.

There are two interesting moments in the lifetime of a piece of data: the moment it is created and the moment it is used. If you can minimize errors at the moment data is created and always address quality issues at the source, you can ensure data quality at the moment it is used. Understanding your data and promoting a data-driven culture goes a long way in improving data quality during its journey.

Want to learn more about data quality?

Request a Collibra Data Quality demo

Related resources


The 6 dimensions of data quality


The 7 most common data quality issues


What is data quality and why is it important?

View all resources

More stories like this one

Geese flying in v-formation representing a cloud data migration
Nov 1, 2021 - 6 min read

Assuring high data quality during cloud data migrations

Read more
Oct 14, 2021 - 5 min read

How to achieve enterprise-scale data reliability

Read more
Aug 26, 2021 - 6 min read

What is anomaly detection?

Read more